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Abstract

This paper proposes a method of detecting the position of
two beams with a common BPM, the method which is use-
ful even if the bunch time-spacing between the two beams
is too small to separate each beam signal with fast switches.
The method is based on the idea that unknown beam pa-
rameters can be estimated if the number of BPM electrodes
is greater than that of the parameters, and if the signals are
independent of each other. Since the number of unknown
parameters of the two beams is 6, consisting of 4 positions
and 2 intensities, an 8-electrode BPM, whose signals are
detected in the frequency domain, is expected to play the
role. The method is to be applied to measuring beam po-
sitions near the interaction point of the two-ring collider
KEKB, where the bunch spacing is only 2 ns in each ring.
The independence of the signals is insured by a finite orbit
separation at the common BPM.

1 INTRODUCTION

In a two-ring collider like the KEKB orbit stabilities at the
interaction point are essential for keeping stable beam col-
lisions. Near the interaction point the orbit separation is so
small that the two beams travel through common pipes and
common BPMs, if inserted. If position measurements are
required with the common BPM, it has been believed that
the bunch separation, in the time domain, between the two
beams must be sufficiently large for separating beam sig-
nals with fast switches. In the KEKB, however, the bunch
spacing is too small to apply the above method. It should
be pointed out that, although the present case has not a suf-
ficient separation in the time domain, here exists a finite
orbit separation between the two beams. Providing a finite
orbit separation in the transverse space, the paper discusses
a possibility of detecting the beam position of each ring
with a common BPM having many electrodes. The present
method is an extension of that in the previous papers[1][2].

2 OUTPUT SIGNAL MODEL

One of the common BPMs, analyzed here, is 55 mm in
diameter, and has 8 electrodes, as shown in Fig.1. The ideal
orbits of the two rings, (-7.5,0) for the positron LER and
(6.26,0) for the electron HER, are shown in the same figure.
The horizontal orbit separation at the BPM is 13.8 mm.
The output signal is detected with a narrow-band detector
at 1017.16 MHz, two times the accelerating frequency.

The output signal can be represented well with a phaser.
The phaser output of the i-th pickup buttonṼi is given by

Ṽi = gie
iφi(pFi(x, y) + qFi(u, v)eiθ), i = 1, ..., 8,
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Figure 1: Geometry of the model BPM and the design or-
bits.

where gi, φi and Fi(x, y) are the gain, the phase
shift and the response function of the i-th electrode,
(p, x, y), (q, u, v) are the charge and position for positron
and electron beams, andθ their phase difference.

The detector measures the peak valueVi of the phaser ,

Vi = gi

√
(pFi(e+))2 + (qFi(e−))2 + 2pqFi(e+)Fi(e−)cosθ.

The gains can be calibrated with beams, as a later section
shows. The response function is calculated from the BPM
geometry. The phase differenceθ must be constant and can
be calculated from the distance between the BPM and the
interactionpoint, or can be estimated with beams as shown
later. For each measurement are 6 unknown parameters
(p, x, y, q, u, v). Since the number of unknown parameters
is less than that of the BPM electrodes, the parameters are
determined by nonlinear fitting. It should be pointed out
here that, if the phase were included into fit parameters, the
phase resolution would be very poor and would degrade
the other resolutions accordingly. By analyzing the covari-
ant matrix associated with the fitting procedure, we can es-
imate the errors of fit parameters for given measurement
errors. The expected error of the i-th parameterσi is given
by the i-th diagonal element of the covariant matrixC(i, j).
Text books show

σ2
i = C(i, i) × σ2

0 ,

whereσ0 is the absolute measurement error of signals.
The position response function used here is derived from

a simple BPM model having very small electrodes. More
realistic response functions can be used, if needed. The
response functions are expanded with harmonic functions
of positions up to the 4-th order terms, and are given by

Fi(X,Y ) = 1 +
4∑

k=1

Rk(ai(k) cos kϕ + bi(k) sin kϕ),
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Table 1: Fit parameters

j p x y q u v
1 2.29 -7.50 .00 -1.00 6.26 .00
2 2.29 -5.50 .00 -1.00 6.26 .00
3 2.29 -7.50 2.00 -1.00 6.26 .00
4 2.29 -9.50 .00 -1.00 6.26 .00
5 2.29 -7.50 -2.00 -1.00 6.26 .00
6 2.29 -7.50 .00 -1.00 8.26 .00
7 2.29 -5.50 .00 -1.00 8.26 .00
8 2.29 -7.50 2.00 -1.00 8.26 .00
9 2.29 -9.50 .00 -1.00 8.26 .00

10 2.29 -7.50 -2.00 -1.00 8.26 .00
11 2.29 -7.50 .00 -1.00 6.26 2.00
12 2.29 -5.50 .00 -1.00 6.26 2.00
13 2.29 -7.50 2.00 -1.00 6.26 2.00
14 2.29 -9.50 .00 -1.00 6.26 2.00
15 2.29 -7.50 -2.00 -1.00 6.26 2.00
16 2.29 -7.50 .00 -1.00 4.26 .00
17 2.29 -5.50 .00 -1.00 4.26 .00
18 2.29 -7.50 2.00 -1.00 4.26 .00
19 2.29 -9.50 .00 -1.00 4.26 .00
20 2.29 -7.50 -2.00 -1.00 4.26 .00
21 2.29 -7.50 .00 -1.00 6.26 -2.00
22 2.29 -5.50 .00 -1.00 6.26 -2.00
23 2.29 -7.50 2.00 -1.00 6.26 -2.00
24 2.29 -9.50 .00 -1.00 6.26 -2.00
25 2.29 -7.50 -2.00 -1.00 6.26 -2.00

whereX = R cosϕ, Y = R sinϕ, and

ai(k) = 2 cos(k(2i − 1)
π

8
), bi(k) = 2 sin(k(2i − 1)

π

8
).

The function is normalized byFi(0, 0) = 1, and the posi-
tion is measured from the BPM center, not from the ideal
orbit.

3 SIMULATION

Simulation was done for a case where the position of each
beam is on the ideal orbit, or shifted by±2 mm at each
measurement. Measurement is done 25 times with different
position combination. The phase differenceθ is π/4. The
nominal charge of each ring is p=2.29 for LER and q=-1.0
for HER. The optimum charge ratio is determined by the
energy ratio of two rings, 3.5 GeV and 8.0 GeV.

The objective of the simulation is not only the demon-
stration of measuring the two beam positions, but also the
derivation of the covariant matrix to estimate the position
resolution. Fit parameters for 25 measurements are listed
in Table 1, and the diagonal elements of the covariant ma-
trix are shown in Table 2. Assuming a relative signal mea-
surement error of3×10−4 and knowing of a typical signal
magnitude of 3, the absolute measurement errorσ0 is about
1 × 10−3. The worst case for the position resolution is at
the 17-th measurement, where the orbit separation is the
minimum value. The worst position resolution is

σx = 6µm, σy = 6µm, σu = 75µm, σv = 51µm.

4 EFFECT OF PHASE DIFFERENCE
ERROR

The relative phase differenceθ between the two beams is
determined by the distance between the interaction point

Table 2: Diagonal elements of the covariant matrix

j p x y q u v
1 2.5 13.6 9.8 7.9 2373.3 418.6
2 4.2 19.9 16.0 11.8 4543.2 789.9
3 2.2 13.1 9.6 7.0 2095.0 404.3
4 1.5 11.7 6.7 4.9 1313.2 252.8
5 2.2 13.1 9.6 7.0 2095.1 404.3
6 3.1 13.5 8.0 10.0 2782.5 171.7
7 6.1 15.1 10.5 17.5 5762.0 272.7
8 2.5 13.0 8.1 8.2 2252.4 168.1
9 1.5 12.1 6.1 5.4 1383.1 121.7

10 2.5 13.0 8.1 8.2 2252.4 168.1
11 1.5 13.6 10.5 4.9 1384.9 497.3
12 2.3 18.7 20.4 7.4 2581.4 1162.5
13 2.0 13.2 10.5 6.6 1875.4 524.6
14 1.0 11.7 6.8 3.3 834.0 267.4
15 1.1 13.0 9.9 3.7 983.3 447.3
16 2.7 15.9 16.3 8.2 2904.2 1127.6
17 3.9 33.6 39.7 11.3 5637.0 2555.6
18 2.5 15.0 15.1 7.7 2672.5 1070.1
19 1.8 11.7 8.5 5.7 1657.1 557.2
20 2.5 15.0 15.1 7.7 2672.5 1070.1
21 1.5 13.6 10.5 4.9 1385.0 497.3
22 2.3 18.7 20.4 7.4 2581.2 1162.4
23 1.1 13.0 9.9 3.7 983.3 447.3
24 1.0 11.7 6.8 3.3 834.0 267.4
25 2.0 13.2 10.5 6.6 1875.4 524.6

and the BPM, and must be kept constant for stable colli-
sions. Even though the BPM is installed at the designed
position within a few mm, the relative phase may differ
from the design value by several degrees. Simulation stud-
ies show that a major effect of the phase error is movement
of the position reading in the horizontal direction. Fig-
ure 2 shows the position reading of two rings when each
beam stays at the design position and the phase difference
is changed around the nominal phase ofπ/4. The phase
error effect is more harmful in HER than in LER. If the po-
sition displacement is required to be less than 0.5 mm the
phase error must be kept less than 1 degree.

Figure 2: Position reading of two beams staying at the de-
sign orbit when the phase changes from the nominal value.

If the relative phase error exists, the position readings are
also moved as the beam current changes. This fact helps
finding the true phase difference. The position reading of
HER is shown in Fig.3 for the case where the phase error
is ±1 degree, each beam stays at the design orbit, and the
electron charge of HER is increased from 0 to -1.6 while
the positron charge of LER is fixed at 2.29, the nominal
value. If the closed orbit of HER at the BPM is stable
within 0.5 mm in real beam operations, we can find the
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true phase with a resolution of less than 0.5 degrees.

Figure 3: Position reading of HER when the phase error
exists and the HER charge is changed.

The other effects of the phase error are deformation of
the position sensitivity and the coupling, in which the posi-
tion reading of one beam is moved when the other beam
moves. These are analyzed by a simulation where one
beam is fixed at the design orbit and the other beam is dis-
placed from the design orbit within 2 mm in both the hori-
zontal and vertical directions, and the phase error is 0.5 de-
grees. The two effects are shown in Fig.4 when the HER
orbit is fixed, and in Fig.5 for the other case. The grid indi-
cates the ideal position reading including the displacement
shown in Fig.2 due to the phase error, and helps observe the
deformation of the sensitivity. The crosses in the smaller
box show the position reading of the fixed beam, and their
distribution measures the coupling. The simulation shows
that both effects are small, compared with the beam size
at the BPM, particularly in the vertical direction. This fact
favors the operation condition that the orbit stability is re-
quired in the vertical direction rather than in the horizontal
direction.

Figure 4: Position reading of two beams when the HER
orbit is fixed and the other LER orbit is shifted.

5 GAIN CALIBRATION

So far the gains have been set unity in the paper. The gains
of the real BPM are not equal to unity, and must be cali-
brated. Otherwise the monitor center would be shifted and

Figure 5: Position reading of two beams when the LER
orbit is fixed and the other HER orbit is shifted.

the position sensitivity would be deformed. The gain cal-
ibration can be done with beams by another nonlinear fit-
ting. The BPM has 8 electrodes and the number of un-
known gains, normalized by the first electrode gain, is 7.
The gain calibration was studied under the condition that
measurments are done 6 times with a single beam, 3 times
for one beam and 3 times for the other. At each measure-
ment the beam is on the design orbit, or displaced by 2 mm
in the vertical direction. Beam measurement parameters
and their covariant matrix elements together with elements
for 7 relative gains are shown in Table 3. Assuming the
relative detection error of3 × 10−4, we find that the gain
error is less than 0.1%, and the position resolution is less
than 4µm in both directions.

Table 3: 6 beam positions and the giagonal elements of the
covariant matrix for the gain fitting.

j p x y C(p) C(x) C(y)
1 1.10 -7.50 -2.0 2.3 159 153
2 1.10 -7.50 0 2.2 165 158
3 1.10 -7.50 2.0 2.2 159 152
4 1.05 6.26 -2.0 1.1 172 164
5 1.05 6.26 0 1.0 178 170
6 1.05 6.26 2.0 0.9 172 165

g2 g3 g4 g5 g6 g7 g8
C(g) 0.9 1.8 3.7 4.7 3.1 2.4 1.1
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